Localization and stretching of polymer chains at the junction of two surfaces.
نویسندگان
چکیده
We present a molecular dynamics study on the stretching of a linear polymer chain that is adsorbed at the junction of two intersecting flat surfaces of varying alignments. We observe a transition from a two-dimensional to one-dimensional (1D) structure of the adsorbed polymer when the alignment, i.e., the angle between the two surfaces that form a groove, θ, is below 135°. We show that the radius of gyration of the polymer chain Rg scales as Rg ∼ N(3/4) with the degree of polymerization N for θ = 180° (planer substrate), and the scaling changes to Rg ∼ N(1.0) for θ < 135° in good solvents. At the crossover point, θ = 135°, the exponent becomes 1.15. The 1D stretching of the polymer chain is found to be 84% of its contour length for θ ⩽ 90°. The center of mass diffusion coefficient D decreases sharply with θ. However, the diffusion coefficient scales with N as D ∼ N(-1), and is independent of θ. The relaxation time τ, for the diffusive motion, scales as τ ∼ N(2.5) for θ = 180° (planar substrate), which changes to τ ∼ N(3.0) for θ ⩽ 90°. At the crossover point, the exponent is 3.4, which is slightly higher than the 1D value of 3.0. Further, a signature of reptation-like dynamics of the polymer chain is observed at the junction for θ ⩽ 90° due to its strong 1D localization and stretching.
منابع مشابه
Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method
We electrochemically deposit conducting polymer to bridge two closely placed electrodes, and then form a polymer nanowire by stretching the polymer bridge with the electrodes. During stretching, the conductance increases initially as the polymer chains are aligned in parallel, and then decreases in a stepwise fashion, due to abrupt changes in the nanowire thickness. We study the current– voltag...
متن کاملNumerical Simulation of Polymer Film Stretching
We present numerical simulations of a film stretching process between two rolls of different temperature and rotational velocity. Film stretching is part of the industrial production of sheet of plastics which takes place after the extrusion process. The goal of the stretching of the sheet material is to rearrange the orientation of the polymer chains. Thus, the final products have more smooth ...
متن کاملPolymers Grafted onto Strongly Adsorbing Surfaces in Poor Solvents: Stretching, Fission, Phase Separation, and Globular Micelles in 2D
Using both analytic theory and computer simulation we study the stretching along the surface of a strongly adsorbed polymer chain. In marked contrast to the case of nonadsorbed chains we show that the polymer does not undergo a Rayleigh instability. Instead it deforms steadily into a lens shape. Our results have dramatic consequences for submonolayer films formed from grafted chains. We show th...
متن کاملDetection of Polymer Brushes developed via Single Crystal Growth
Single crystals consisting various surface morphologies and epitaxial structures were applied to investigate the effect of other phase regions in the vicinity of a given tethered chains-covered area having a certain molecular weight of amorphous brushes. The designed experiments demonstrated that regardless of the type of surface morphology (patterned and especial mixed-brushes, homo and co...
متن کاملرسانندگی الکترونی سیمهای مولکولی پلیپیرول (PPy) و ظهور پدیده فانو رزونانس
In this paper, we studied the electronic conductance of a polypyrrole polymer, which is embedded between two semi-infinite simple chains by using Green’s function technique in tight-binding approach. We first reduced the center polymer to a one dimensional chain with renormalized onsite and hopping energies by renormalization method. Then, we calculated the system conductivity as a function of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 140 20 شماره
صفحات -
تاریخ انتشار 2014